
BUILT FOR THE SPEED OF BUSINESS

Additional Line 18 Point Verdana

2 © Copyright 2013 Pivotal. All rights reserved. 2 © Copyright 2013 Pivotal. All rights reserved.

A Practical Use of Servlet 3.1:
Implementing WebSocket 1.0

Mark Thomas

9 April 2014

3 © Copyright 2013 Pivotal. All rights reserved.

Agenda

 Introductions

 WebSocket

 Implementation aims

 Mapping to Servlet 3.1

features

 Complicating factors

 Summary

 Questions

4 © Copyright 2013 Pivotal. All rights reserved.

Introductions

 markt@apache.org

 Apache Tomcat committer

 Developed the majority of

Tomcat 7 and Tomcat 8

 ASF security team member

 ASF infrastructure volunteer

 Consultant Software

Engineer at Pivotal

 Member of Servlet,

WebSocket and EL expert

groups

 Pivotal security team lead

5 © Copyright 2013 Pivotal. All rights reserved.

WebSocket RFC 6455

 Defined in RFC 6455

 Asynchronous messages
– Text

– Binary

– Control

 One persistent connection
– No state management

 Uses HTTP upgrade
– http://... -> ws://…

– https://... -> wss://…

6 © Copyright 2013 Pivotal. All rights reserved.

WebSocket RFC 6455

 Text and Binary messages
– All text messages are UTF-8

encoded

– 2^63 limit on data within a

single frame

– Messages may be split

across multiple frames

– No limit on message size

 Control messages
– Limited to 125 bytes of data

– May be sent at any time

 No multiplexing
– draft extension

7 © Copyright 2013 Pivotal. All rights reserved.

WebSocket JSR 356

 No requirement to build on

Servlet 3.1
– HttpSession passed as

Object to avoid explicit

dependency

 Configuration styles
– Programmatic

– Annotation

 Provides client and server

APIs

 Client API is sub-set of

server API

8 © Copyright 2013 Pivotal. All rights reserved.

Implementation Aims

 JSR 356 compliant

 RFC6455 compliant

 Container neutral
– Only depends on Servlet 3.1

 Is there a performance cost

of container neutrality?
– Will be some

– Not significant

9 © Copyright 2013 Pivotal. All rights reserved.

Mapping to Servlet 3.1 Features

 Single persistent

connection

 Asynchronous messages

 Requires non-blocking IO

for a scalable solution
– Blocking IO is possible but it

doesn’t scale

 Use Servlet 3.1 non-

blocking IO

10 © Copyright 2013 Pivotal. All rights reserved.

Mapping to Servlet 3.1 Features

 WebSocket connection

starts with HTTP upgrade

 Use Servlet 3.1 HTTP

upgrade

 Annotation configuration

 Use Servlet 3.0 annotation

scanning

11 © Copyright 2013 Pivotal. All rights reserved.

Annotation Scanning

 Feature added in Servlet 3.0

 Implement ServletContainerInitializer

 Add @HandlesTypes

 When web application starts the container calls
ServletContainerInitializer#

 onStartup(Set<Class<?>>, ServletContext)

12 © Copyright 2013 Pivotal. All rights reserved.

Annotation Scanning

@HandlesTypes({ServerEndpoint.class,

 ServerApplicationConfig.class,

 Endpoint.class})

public class WsSci implements

 ServletContainerInitializer { …

13 © Copyright 2013 Pivotal. All rights reserved.

Annotation Scanning

 ServerEndpoint for annotated endpoints

 Endpoint for programmatic endpoints

 ServerApplicationConfig for filtering endpoints

14 © Copyright 2013 Pivotal. All rights reserved.

Annotation Scanning

 Need to scan every class for @HandlesTypes matches

 Scanning every class is (relatively) expensive

 Don’t want to scan if it isn’t necessary

 Servlet 3.0 provides options for minimizing scanning

– Specification language wasn’t clear

– Discovered Tomcat’s implementation wasn’t quite as

intended

15 © Copyright 2013 Pivotal. All rights reserved.

Annotation Scanning

 SCIs discovered in container provided JARs are always

processed

 SCI discovery must follow the web application’s class loader

delegation model

 No specification requirements for the order that SCIs are

invoked

16 © Copyright 2013 Pivotal. All rights reserved.

Annotation Scanning

 SCIs are not loaded from web application JARs excluded

using ordering preferences in web.xml

 JARs excluded from ordering preferences in web.xml are

not scanned for classes to be handled by any SCI

 <metadata-complete> has no impact on SCI discovery

or scanning of classes

17 © Copyright 2013 Pivotal. All rights reserved.

HTTP Upgrade

 Feature added in Servlet 3.1

 Implement HttpUpgradeHandler

 Call HttpServletRequest#upgrade(…)

 Once the HTTP response has been sent to the client the

container calls
HttpUpgradeHandler#init(WebConnection)

 Use WebConnection to access the input and output

streams

18 © Copyright 2013 Pivotal. All rights reserved.

HTTP Upgrade

package javax.servlet.http;

public interface HttpUpgradeHandler {

 void init(WebConnection connection);

 void destroy();

}

 Interface applications must implement to handle upgraded

connections

19 © Copyright 2013 Pivotal. All rights reserved.

HTTP Upgrade

package javax.servlet.http;

public interface HttpServletRequest extends

 ServletRequest {

 public <T extends HttpUpgradeHandler> T

 upgrade(Class<T> httpUpgradeHandlerClass)

 throws IOException, ServletException;

}

 Method that triggers the upgrade process

20 © Copyright 2013 Pivotal. All rights reserved.

HTTP Upgrade

package javax.servlet.http;

public interface WebConnection
 extends AutoCloseable {

 ServletInputStream getInputStream()
 throws IOException;

 ServletOutputStream getOutputStream()
 throws IOException;

}

 Only provides access to the input and output streams

21 © Copyright 2013 Pivotal. All rights reserved.

HTTP Upgrade

 HttpUpgradeHandler implementations must have a zero

argument constructor

 WebConnection only has access to the input and output

streams

 Need to pass far more information to the
HttpUpgradeHandler instance

 No API defined for passing this information

 Applications must provide their own

22 © Copyright 2013 Pivotal. All rights reserved.

HTTP Upgrade

public void preInit(

 Endpoint ep,

 EndpointConfig endpointConfig,

 WsServerContainer wsc,

 WsHandshakeRequest handshakeRequest,

 String subProtocol,

 Map<String,String> pathParameters,

 boolean secure) {

…

23 © Copyright 2013 Pivotal. All rights reserved.

Non-blocking IO

 Feature added in Servlet 3.1

 New methods added to ServletInputStream and

ServletOutputStream

 May only be used within asynchronous processing or

upgraded connections

 Once switched to non-blocking IO it is not permitted to

switch back to blocking IO

24 © Copyright 2013 Pivotal. All rights reserved.

Non-blocking IO

package javax.servlet;

public abstract class ServletInputStream

 extends InputStream {

 …

 public abstract boolean isFinished();

 public abstract boolean isReady();

 public abstract void setReadListener(

 ReadListener listener);

}

25 © Copyright 2013 Pivotal. All rights reserved.

Non-blocking IO

package javax.servlet;

public interface ReadListener extends
 java.util.EventListener{

 public abstract void onDataAvailable()
 throws IOException;

 public abstract void onAllDataRead()
 throws IOException;

 public abstract void onError(
 java.lang.Throwable throwable);

}

26 © Copyright 2013 Pivotal. All rights reserved.

Non-blocking IO

 Start non-blocking read by setting the ReadListener

 Container will call onDataAvailable() when there is data

to read

 Application may read once from the ServletInputStream

 Application must call ServletInputStream#isReady()

before next read

 An IllegalStateException is thrown if applications

don’t do this

27 © Copyright 2013 Pivotal. All rights reserved.

Non-blocking IO

 If isReady() returns true, the application may read again

from the ServletInputStream

 If isReady() returns false, the application must wait for

the next onDataAvailable() callback

 The container will only call onDataAvailable() once

isReady() has returned false and there is data to read

 The container will only call onAllDataRead() when the

end of the InputStream is reached

28 © Copyright 2013 Pivotal. All rights reserved.

Non-blocking IO

package javax.servlet;

public abstract class ServletOutputStream

 extends OutputStream {

 …

 public abstract boolean isReady();

 public abstract void setWriteListener(

 WriteListener listener);

}

29 © Copyright 2013 Pivotal. All rights reserved.

Non-blocking IO

package javax.servlet;

public interface WriteListener extends

 java.util.EventListener{

 public void onWritePossible()

 throws IOException;

 public void onError(

 java.lang.Throwable throwable);

}

30 © Copyright 2013 Pivotal. All rights reserved.

Non-blocking IO

 Start non-blocking write by setting the WriteListener

 Container will call onWritePossible() when data can be

written without blocking

 Application may write once to the ServletOutputStream

 Application must call ServletOuputStream#isReady()

before next write

 An IllegalStateException is thrown if applications

don’t do this

31 © Copyright 2013 Pivotal. All rights reserved.

Non-blocking IO

 If isReady() returns true, the application may write again

to the ServletOutputStream

 If isReady() returns false, the application must wait for

the next onWritePossible() callback

 The container will only call onWritePossible() once

isReady() has returned false and data may be written

without blocking

32 © Copyright 2013 Pivotal. All rights reserved.

Non-blocking IO

private static class WsReadListener

 implements ReadListener {

 …

 public void onDataAvailable() {

 try {

 wsFrame.onDataAvailable();

 } catch … {

 …

 }

 }

}

33 © Copyright 2013 Pivotal. All rights reserved.

Non-blocking IO

public class WsFrameServer extends WsFrameBase {

 public void onDataAvailable() throws IOException {

 synchronized (connectionReadLock) {

 while (isOpen() && sis.isReady()) {

 int read = sis.read(inputBuffer, writePos,

 inputBuffer.length - writePos);

 if (read == 0) return;

 if (read == -1) throw new EOFException();

 writePos += read;

 processInputBuffer();

 }

 }

 }

}

34 © Copyright 2013 Pivotal. All rights reserved.

Non-blocking IO

private static class WsWriteListener
 implements WriteListener {

 …

 public void onWritePossible() {
 wsRemoteEndpointServer.
 onWritePossible();

 }

 }

}

35 © Copyright 2013 Pivotal. All rights reserved.

Non-blocking IO

public void onWritePossible() {

 boolean complete = true;

 try {

 while (sos.isReady()) {

 complete = true;

 for (ByteBuffer buffer : buffers) {

 if (buffer.hasRemaining()) {

 complete = false;

 sos.write(buffer.array(), buffer.arrayOffset(), buffer.limit());

 buffer.position(buffer.limit());

 break;

 }

 }

36 © Copyright 2013 Pivotal. All rights reserved.

Non-blocking IO
 if (complete) {

 wsWriteTimeout.unregister(this);

 if (close) close();

 break;
 }
 }

 } catch (IOException ioe) {…}

 if (!complete) {

 long timeout = getSendTimeout();

 if (timeout > 0) {

 timeoutExpiry = timeout + System.currentTimeMillis();

 wsWriteTimeout.register(this);
 }
 }
}

37 © Copyright 2013 Pivotal. All rights reserved.

Non-blocking IO

 Timeouts
– Only have access to the ServletInputStream and

ServletOutputStream

– No API for setting timeouts

– Had to create a timeout mechanism for WebSocket writes

 Thread safety
– Lots of places to trip up

– Write with multi-threading in mind

– Test extensively

38 © Copyright 2013 Pivotal. All rights reserved.

Complicating Factors: Non-blocking Styles

 Server uses Servlet 3.1 style
– Read/write listeners and isReady()

 WebSocket API
– java.util.concurrent.Future

– javax.websocket.SendHandler

 Client uses AsynchronousSocketChannel
– java.nio.channels.CompletionHandler

 Need to convert between these

39 © Copyright 2013 Pivotal. All rights reserved.

Complicating Factors: Non-blocking Styles

 Future always converted to SendHandler

 Server side
– SendHandler mapped to Servlet 3.1 style

 Client side
– SendHandler always converted to CompletionHandler

40 © Copyright 2013 Pivotal. All rights reserved.

Complicating Factors: Blocking Messages

 The WebSocket API
– Some messages use blocking IO

– Some messages use non-blocking IO

 The Servlet 3.1 API does not allow switching from

non-blocking to blocking

 Square peg, meet round hole

 Have to simulate blocking

41 © Copyright 2013 Pivotal. All rights reserved.

Complicating Factors: Blocking Messages

void startMsgBlock(byte opCode, ByteBuffer payload,
 boolean last) throws IOException {

 FutureToSendHandler f2sh = new FutureToSendHandler();

 startMessage(opCode, payload, last, f2sh);

 try {

 long timeout = getBlockingSendTimeout();

 if (timeout == -1) f2sh.get();

 else f2sh.get(timeout, MILLISECONDS);

 } catch (…) {

 throw new IOException(e);

 }

}

42 © Copyright 2013 Pivotal. All rights reserved.

Complicating Factors: Blocking Messages

 No API to define a timeout for blocking messages
– Specified via a user property on the session

– Container specific solution

 What happens under the hood?
– Data to write is written to the socket

– Remaining data is buffered

– Socket registered for write

– Callback when socket ready for write

– Repeat until buffer is empty

43 © Copyright 2013 Pivotal. All rights reserved.

Complicating Factors: Blocking Messages

 How is the block implemented?

 Simple latch
– Create a latch when the write starts

– f2sh.get() calls latch#await()

– Container calls latch.countDown() when write is complete

 This works for blocking writes on the application thread

 However…

44 © Copyright 2013 Pivotal. All rights reserved.

Complicating Factors: Blocking Messages

 Servlet 3.1 (and earlier) is written based on the following

assumption:
– There is only ever one container thread accessing a socket at any

one time

 Tomcat enforces this with a lock
– Prevents all sorts of threading issues with async processing

 This causes big problems for WebSocket

45 © Copyright 2013 Pivotal. All rights reserved.

Complicating Factors: Blocking Messages

 Start with an established but idle WebSocket connection

 Poller detects data is available to read

 Poller passes socket to container thread for processing

 Container thread obtains the lock for working with the socket

 Code path eventually reaches application code

 Application processes message

46 © Copyright 2013 Pivotal. All rights reserved.

Complicating Factors: Blocking Messages

 Application replies with its own message using a blocking

write

 Message is too big for a single write

 Message is partially written

 Remaining message is buffered

 Socket is registered with Poller for write

47 © Copyright 2013 Pivotal. All rights reserved.

Complicating Factors: Blocking Messages

 Container thread blocks on latch as message write is not

complete

 Poller detects data can be written

 Poller passes socket to container thread for processing

 Container thread blocks waiting for lock to allow it to work

with the socket

48 © Copyright 2013 Pivotal. All rights reserved.

Complicating Factors: Blocking Messages

 Deadlock

 The thread that initiated the write has the lock for the socket

 That thread is blocked waiting for the write to complete

 The thread that will allow the write to progress is blocked

waiting for the lock for the socket

49 © Copyright 2013 Pivotal. All rights reserved.

Complicating Factors: Blocking Messages

 Servlet EG discussed several options

 Automatic blocking
– No call to isReady() results in a blocking read / write

– Ends up in same deadlock situation

 WebConnection.start(Runnable)

– Clunky

– Purpose not immediately obvious

– Should work but was untested

50 © Copyright 2013 Pivotal. All rights reserved.

Complicating Factors: Blocking Messages

 For connections using HTTP upgrade, allow concurrent read

and write
– No more than one read thread

– No more than one write thread

 Breaks the implied one thread per socket rule of the Servlet

API

 It was the solution I tried first
– It worked

– Some threading issues

51 © Copyright 2013 Pivotal. All rights reserved.

Complicating Factors: Generic Types

public interface MessageHandler {

 interface Partial<T> extends MessageHandler {

 void onMessage(T messagePart, boolean last);

 }

 interface Whole<T> extends MessageHandler {

 void onMessage(T message);

 }

}

52 © Copyright 2013 Pivotal. All rights reserved.

Complicating Factors: Generic Types

 The container has to figure out what T is at runtime

 Has to do the same for Encoder implementations

 Foo implements MessageHandler.Whole<String>

– Fairly simple

 Bar extends Foo

– Still fairly simple

 It can get more complicated…

53 © Copyright 2013 Pivotal. All rights reserved.

Complicating Factors: Generic Types

 A extends B<Boolean,String>

 B<Y,X> extends C<X,Y>

 C<X,Y> implements

 MessageHandler.Whole<X>, Other<Y>

 Generic information is available at runtime

54 © Copyright 2013 Pivotal. All rights reserved.

Complicating Factors: Generic Types

 Have to do a little digging to find it
– Class#getGenericInterfaces()

– ParameterizedType#getRawType()

– ParameterizedType#getActualTypeArguments()

 org.apache.tomcat.websocket.Util#getGenericType()

55 © Copyright 2013 Pivotal. All rights reserved.

Complicating Factors: UTF-8

 WebSocket text messages are always UTF-8 encoded

 Tomcat uses the Autobahn test suite to check for RFC6455

compliance

 Autobahn includes a lot of tests for UTF-8 handling
– Autobahn has been incredibly useful

– Highly recommended for developers of WebSocket clients or

servers

56 © Copyright 2013 Pivotal. All rights reserved.

Complicating Factors: UTF-8

 The UTF-8 decoder provided by the JRE triggers Autobahn

failures

 Wrote some test cases that identified further failures

 WebSocket text messages are always UTF-8 encoded

 Tomcat uses the Autobahn test suite to check for RFC6455

compliance

57 © Copyright 2013 Pivotal. All rights reserved.

Complicating Factors: UTF-8

 Autobahn includes a lot of tests for UTF-8 handling
– Autobahn has been incredibly useful

– Highly recommended for developers of WebSocket clients or

servers

 The UTF-8 decoder provided by the JRE triggers Autobahn

failures

 Wrote some test cases that identified further failures

58 © Copyright 2013 Pivotal. All rights reserved.

Complicating Factors: UTF-8

 Issues with JRE provided UTF-8 decoder
– It accepts byte sequences that should be rejected

– It doesn’t fail fast on invalid sequences

– Not failing fast means the wrong number of invalid bytes are

detected

– Not failing fast means too many bytes (including valid bytes) are

incorrectly replaced with the replacement character

59 © Copyright 2013 Pivotal. All rights reserved.

Complicating Factors: UTF-8

 Writing your own UTF-8 decoder is non-trivial

 Apache Harmony to the rescue

 Took the UTF-8 decoder from Apache Harmony

 This also had some failures

 Modified the decoder to fix the issues

 Switched to this new decoder for all Tomcat code including

WebSocket

60 © Copyright 2013 Pivotal. All rights reserved.

Complicating Factors: SSL

 AsynchronousSocketChannel is a good match for a

WebSocket client implementation

 No SSL support

 Searching for implementations to reuse didn’t find any

implementations

 Had to write one from scratch
– Based on Tomcat’s HTTP NIO connector SSL implementation

61 © Copyright 2013 Pivotal. All rights reserved.

Summary

 WebSocket 1.0 has been implemented on Servlet 3.1

 Tomcat 8
– Also JSP 2.3 and EL 3.0

 There were some complications

 Had to ‘bend’ the Servlet specification to do it

 https://svn.apache.org/repos/asf/tomcat/trunk

62 © Copyright 2013 Pivotal. All rights reserved.

Questions

63 © Copyright 2013 Pivotal. All rights reserved.

Thank you

BUILT FOR THE SPEED OF BUSINESS

